

BY REGD. POST WITH AD

STATE POLLUTION CONTROL BOARD, ODISHA [DEPARTMENT OF FOREST & ENVIRONMENT, GOVERNMENT OF ODISHA]

Paribesh Bhawan, A/118, Nilakantha Nagar, Unit-VIII, Bhubaneswar-751012 Phone-2561909, Fax: 2562822, 2560955

CONSENT ORDER

No.	3010	IND-I-0	CON-6363	Dt. 25.03.2019 1
CONSEN	T ORDER NO. 2	716		
Wa		974 and emis		luent under Section 25/26 of ection 21 of Air (PCP) Act,
Ref: Yo	ur online application	n <u>ID No.242</u>	0862, Dtd.25-0	02-2019
Со	nsent to operate is	hereby granted	d under section	25/26 of Water (Prevention &
Control of	Pollution) Act, 1974	and under sect	ion 21 of Air (P	revention & Control of Pollution)
Act, 1981	and rules framed ther	reunder to		
Name of the	ne Industry <u>M/s Ar</u>	dent Steel Lir	nited	
Name of the	ne Occupier & Design	nation <u>Dr. Subh</u>	asish Das, Di	rector
Address:	Phuljhar, Suakati,	Dist - Keonjh	ar- 758018	
	f Products Manufa			
SI.	No.	Product	***************************************	Quantity
	1. Iron Ore Pelle	t	5	0,000 Metric Tonnes /Month
	2. Producer Gas		***************************************	25.800Nm³/Hr

SI. No.	Product	Quantity
1.	Iron Ore Pellet	50,000 Metric Tonnes /Month
2.	Producer Gas	25,800Nm³/Hr
3.	Flux grinding unit	5 Metric Tonnes/Hour

This consent order is valid for the period from 01.04.2019 to 31.03.2024

This consent order is valid for the specified outlets, discharge quantity and quality of effluents (ii) quantity of emission and its quality, specified chimney / stack (iii) quantity of solid waste and its disposal as specified below.

This consent is granted subject to the General and Special Conditions stipulated below:

A. Discharge permitted through the following outlet subject to the standard

Outlet	Description	Point of	Quantity		Pre-so	cribed	Stand	ard	
No.	of outlet	discharge	of discharge KLD or KL/hr	рН	BOD (mg/l)	(mg/l)	TSS (mg/l)	Fecal Colifform (MPN/100ml)	O & G (mg/l)
01.	Process effluent through settling tanks	Recycled back to process (900 KLD)	NIL	-	***	##			A control of the cont
02.	Outlet of STP (15 KLD) for domestic wastewater of plant premises	To be used for gardening	15 KLD	6.5-9.0	30	49	100	1000	

B. Emission permitted through the following stack subject to the prescribed standard

Chimney	Description of Stack	Stack	Quantity	Pr	Prescribed Standard				
Stack No.		height (m)	of emission (m³/hr)	РМ	SO ₂	NO _x			
1	Bag filter at proportioning system (Iron ore fines and coke bunker)	30	8,000	100	29	**	-	,40	
2.	Bag filter at raw material transfer point of mixer (Mixture building)	30	4,000	100	44	**	West .	~	
3	Multi cyclone and ESP at travelling grate and rotary kiln	52	Me	100		*		***	
4	Bag filter at Flux grinding unit	26	6,500	100	-	*	-79	~	

C. Disposal of solid waste permitted in the following manner

SI. No.	Type of Solid waste		be reused	Quantity to be reused off site (TPD)		Description of disposal site.
1.	Cinder from Gas Producer Plant	With the second	-		**:	Used for low land filling inside plant premises

D. GENERAL CONDITIONS FOR ALL UNITS

- The consent is given by the Board in consideration of the particulars given in the application. Any change or alternation or deviation made in actual practice from the particulars furnished in the application will also be the ground liable for review/variation/revocation of the consent order under section 27 of the Act of Water (Prevention & Control of Pollution) Act, 1974 and section 21 of Air (Prevention & Control of Pollution) Act, 1981 and to make such variations as deemed fit for the purpose of the Acts.
- 2. The industry would immediately submit revised application for consent to operate to this Board in the event of any change in the quantity and quality of raw material / and products / manufacturing process or quantity /quality of the effluent rate of emission / air pollution control equipment / system etc.
- The applicant shall not change or alter either the quality or quantity or the rate of discharge or temperature or the route of discharge without the previous written permission of the Board.
- 4. The application shall comply with and carry out the directives/orders issued by the Board in this consent order and at all subsequent times without any negligence on his part. In case of non-compliance of any order/directives issued at any time and/or violation of the terms and conditions of this consent order, the applicant shall be liable for legal action as per the provisions of the Law/Act.
- 5. The applicant shall make an application for grant of fresh consent at least 10 days before the date of expiry of this consent order.
- 6. The issuance of this consent does not convey any property right in either real or personal property or any exclusive privileges nor does it authorize any injury to private property or any invasion of personal rights, For any infringement of Central, State laws or regulation.
- This consent does not authorize or approve the construction of any physical structure or facilities or the undertaking of any work in any natural water course.
- 8. The applicant shall display this consent granted to him in a prominent place for perusal of the public and inspecting officers of this Board.
- 9. An inspection book shall be opened and made available to Board's Officers during the visit to the factory.
- 10. The applicant shall furnish to the visiting officer of the Board any information regarding the construction, installation or operation of the plant or of effluent treatment system / air pollution control system / stack monitoring system any other particulars as may be pertinent to preventing and controlling pollution of Water / Air.
- 11. Meters must be affixed at the entrance of the water supply connection so that such meters are easily accessible for inspection and maintenance and for other purposes of the Act provided that the place where it is affixed shall in no case be at a point before which water has been taped by the consumer for utilization for any purposes whatsoever.
- 12. Separate meters with necessary pipe-line for assessing the quantity of water used for each of the purposes mentioned below:
 - a) Industrial cooling, spraying in mine pits or boiler feed,
 - b) Domestic purpose
 - c) Process
- 13. The applicant shall display suitable caution board at the place where the effluent is entering into any water-body or any other place to be indicated by the Board, indicating therein that the area into which the effluents are being discharged is not fit for the domestic use/bathing
- Storm water shall not be allowed to mix with the trade and/or domestic effluent on the upstream of the terminal manholes where the flow measuring devices will be installed.
- 15. The applicant shall maintain good house-keeping both within the factory and the premises. All pipes, valves, sewers and drains shall be leak-proof. Floor washing shall be admitted into the effluent collection system only and shall not be allowed to find their way in storm drains or open areas.
- 16. The applicant shall at all times maintain in good working order and operate as efficiently as possible all treatment or control facilities or systems install or used by him to achieve with the term(s) and conditions of the consent.
- 17. Care should be taken to keep the anaerobic lagoons, if any, biologically active and not utilized as mere stagnation pends. The anaerobic lagoons should be fed with the required nutrients for effective digestion. Lagoons should be constructed with sides and bottom made impervious.
- 18. The utilization of treated effluent on factory's own land, if any, should be completed and there should be no possibility of the effluent gaining access into any drainage channel or other water courses either directly or by overflow.
- 19. The effluent disposal on land, if any, should be done without creating any nuisance to the surroundings or inundation of the lands at any time.
- 20. If at any time the disposal of treated effluent on land becomes incomplete or unsatisfactory or create any problem or becomes a matter of dispute, the industry must adopt alternate satisfactory treatment and disposal measures.
- The sludge from treatment units shall be dried in sludge drying beds and the drained liquid shall be taken to equalization tank.
- 22. The effluent treatment units and disposal measures shall become operative at the time of commencement of production.
- 23. The applicant shall provide port holes for sampling the emissions and access platform for carrying out stack sampling and provide electrical outlet points and other arrangements for chimneys/stacks and other sources of emissions so as to collect samples of emission by the Board or the applicant at any time in accordance with the provision of the Act or Fules made therein.
- 24. The applicant shall provide all facilities and render required assistance to the Board staff for collection of samples / stack monitoring / inspection.

- 25 The applicant shall not change or alter either the quality or quantity or rate of emission or install, replace or after the air pollution control equipment or change the raw material or manufacturing process resulting in any change in quality and/or quantity of emissions, without the previous written permission of the Board.
- No control equipments or chimney shall be altered or replaced or as the case may be erected or re-erected except with the previous approval 26.
- 27 The liquid effluent arising out of the operation of the air pollution control equipment shall be treated in the manner and to ion of standards prescribed by the Board in accordance with the provisions of Water (Prevention and Control of Poliution) Act, 1974 (as amended)
- 28 The stack monitoring system employed by the applicant shall be opened for inspection to this Board at any time.
- 29 There shall not be any fugitive or episodal discharge from the premises
- In case of such episodal discharge/emissions the industry shall take immediate action to bring down the emission within the limits prescribed by the Board in conditions/stop the operation of the plant. Report of such accidental discharge /emission shall be brought to the notice of the 30
- The applicant shall keep the premises of the industrial plant and air pollution control equipments clean and make all hoods, pipes, valves, 31 stacks/chimneys leak proof. The air pollution control equipments, location, inspection chambers, sampling port holes shall be made easily accessible at all times.
- Any upset condition in any of the plant/plants of the factory which is likely to result in increased effluent discharge/emission of air pollutants and / or result in violation of the standards mentioned above shall be reported to the Headquarters and Regional Office of the Board by fax / 32 speed post within 24 hours of its occurrence.
- The industry has to ensure that minimum three varieties of trees are planted at the density of not less than 1000 trees per acre. The trees may be planted along boundaries of the industries or industrial premises. This plantation is stipulated over and above the bulk plantation of 33 trees in that area.
- The solid waste such as sweeping, wastage packages, empty containers residues, sludge including that from air pollution control equipments collected within the premises of the industrial plants shall be disposed off scientifically to the satisfaction of the Board, so as no to cause 34 fugitive emission, dust problems through leaching etc., of any kind.
- 35 All solid wastes arising in the premises shall be properly classified and disposed off to the satisfaction of the Board by
 - Land fill in case of inert material, care being taken to ensure that the material does not give rise to leachate which may percolate into 13 ground water or carried away with storm run-off,
 - Controlled incineration, wherever possible in case of combustible organic material. Composting, in case of bio-degradable material.
- Any toxic material shall be detoxicated if possible, otherwise be sealed in steel drums and buried in protected areas after obtaining approval of this Board in writing. The detoxication or sealing and burying shall be carried out in the presence of Board's authorized persons only. Letter of authorization shall be obtained for handling and disposal of hazardous wastes. 36
- If due to any technological improvement or otherwise this Board is of opinion that all or any of the conditions referred to above requires variation (including the change of any control equipment either in whole or in part) this Board shall after giving the applicant an opportunity of 37 being heard, vary all or any of such condition and thereupon the applicant shall be bound to comply with the conditions so varied.
- 38 The applicant, his/heirs/legal representatives or assignees shall have no claim whatsoever to the condition or renewal of this consent after the expiry period of this consent
- The Board reserves the right to review, impose additional conditions or condition, revoke change or after the terms and conditions of this 39
- Notwithstanding anything contained in this conditional letter of consent, the Board hereby reserves to it the right and power under section 27(2) of the Water (Prevention & Control of Pollution) Act, 1974 to review any and/or all the conditions imposed herein above and to make such 40 variations as deemed fit for the purpose of the Act by the Board.
- The conditions imposed as above shall continue to be in force until revoked under section 27(2) of the Water (Prevention & Control of 41. Pollution) Act, 1974 and section 21 A of Air (Prevention & Control of Pollution) Act, 1981
- In case the consent fee is revised upward during this period, the industry shall pay the differential fees to the Board (for the remaining years) to keep the consent order in force. If they fail to pay the amount within the period stipulated by the Board the consent order will be revoked 42 without prior notice.
- 43. The industry shall comply to all the conditions stipulated under Charter on Corporate Responsibility for Environmental Protection (CREP) guidelines in a time bound manner as envisaged there in. (if applicable)
- 44 The industry shall comply to the conditions stipulated in CTE order issued by Odisha State Pollution Control Board and conditions stipulated in Environmental Clearances issued by MoEF, Govt. of India.
- 45 The industry shall abide by E(P) Act, 1986 and Rules framed there-under.
- The Board reserves the right to revoke/refuse consent to operate at any time during period for which consent is granted in case any violation 46 is observed and to modify/ stipulate additional conditions as deemed appropriate

GENERAL CONDITIONS FOR UNITS WITH INVESTMENT OF MORE THAN Rs.50 CRORES, AND 17 CATEGORIES OF HIGHLY POLLUTING INDUSTRIES (RED A)

- The applicant shall analyse the effluent / emissions and Ambient Air Quality every month through approved laboratory for the parameters indicated in TABLE- 'B', 'C' & Part -'B' as mentioned in this order and shall furnish the report thereof to the Board on monthly basis.
- 2. The following information shall be forwarded to the Member Secretary on or before 10th of every month.
 - a) Performance / progress of the treatment plant.
 - b) Monthly statement of daily discharge of domestic and/cr trade effluent.
- 3. Non-compliance with effluent limitations
 - a) If for any reason the applicant does not comply with or is unable to comply with any effluent limitations specified in this consent, the applicant shall immediately notify the consent issuing authority by telephone and provide the consent issuing authority with the following information in writing within 5 days of such notification.
 - i) Causes of non-compliance
 - ii) A description of the non-compliance discharge including its impact on the receiving waters.
 - iii) Anticipated time of continuance of non-compliance if expected to continue or if such condition has been corrected the duration or period of non-compliance.
 - iv) Steps taken by the applicant to reduce and eliminate the non-complying discharge and
 - v) Steps to be taken by the applicant too prevent the condition of non-compliance.
 - b) The applicant shall take all reasonable steps to minimize any adverse impact to natural waters resulting from non-compliance with any effluent limitation specified in this consent including such accelerated or additional monitoring as necessary to determine the nature and impact of the non-complying discharge.
 - c) Nothing in this consent shall be construed to relieve the applicant from civil or criminal penalties for non-compliance whether or not such non-compliance is due to factors beyond his control, such as break-down, electric failure, accident or natural disaster.
- Proper housekeeping shall be maintained inside the factory premises including process areas by a dedicated team.
- 5. The industry must constitute a team of responsible and technically qualified personnel who will ensure continuous operation of all pollution control devices round the clock (including night hours) and should be in a position to explain the status of operation of the pollution control measures to the inspecting officers of the Board at any point of time. The name of these persons with their contact telephone numbers shall be intimated to the concerned Regional Officer and Head Office of the Board and in case of any change in the team it shall be intimated to the Board immediately.
- 6. The industry shall engage dedicated qualified manpower to ensure continuous and effective operation of online stack / Ambient Air Quality / Effluent monitoring stations for maintenance of database, real time data transfer to SPCB server, data analysis and co-ordination with concerned personnel of process units for taking corrective measures in case of non-compliances and to respond to the instructions of SPCB in this matter.

E. SPECIAL CONDITIONS (AIR POLLUTION CONTROL):

- Adequate dust suppression arrangements shall be provided at raw material handling, product handling, coal handling system and other potential dust generating points to control fugitive emission.
- The unit shall operate all the air pollution control devices effectively all the time so as to meet the prescribed standard for particulate matter emission as mentioned in Section-B of the consent order.
- The cinder generated from the Gas Producer Plant shall be dumped in an area earmarked for the same. Sprinkling arrangement shall be provided at the disposal site so that the ash does not become air borne during dry season.
- 4. The industry shall take expedious steps to make entire internal roads black topped / concreted by June, 2019 and permanent high pressure water spraying system shall be installed for regular spraying of water on roads and work zone to minimize fugitive emission.
- The height of the stack connected to DG set shall conform to the following H = h+0.2√KVA
 Where, h= Height of the building where it is installed in meter KVA = Capacity of DG set H = Height of the stack in meter above ground level.

F. SPECIAL CONDITIONS (WATER POLLUTION CONTROL):

- Cooling tower blow down water shall be taken to storage pond and shall be used in green pellet making / dust suppression.
- 2. Wastewater generated during regeneration of DM plant shall be neutralized and reused for dust suppression.
- 3. The wastewater generated in slurry form from rotary dryer, indorating furnaces transfer points, pellet screens circuit etc. shall be treated in two nos. of thickeners and supernatant water shall be reused. Thickener underflow shall be taken to vacuum disc filter from where filter cake shall be separated and filtrate shall be collected in sump for reuse.
- 4. The unit shall provide garland drain around raw material and product stock yard. Run off generated from this area shall be passed through adequate settling arrangement so that the final discharge meets the prescribed general standard for discharge notified under E(P) Act, 1986.
- 5. The industry shall install separate Sewage Treatment Plant (STP) of adequate capacity for treatment of domestic wastewater generated from the colony.
- There shall not be any discharge of phenolic wastewater from the catch pit. The
 wastewater generated from the sealing of producer gas plant shall be recycled back
 to the process after separation of tar.

- The tar so generated shall be stored off in a concrete pit under a cover shed.
- The unit shall develop a thick green belt around the factory premises.

G. SPECIAL CONDITIONS (OTHERS):

- The unit shall obtain authorization from the Board under the Hazardous & Other Wastes (Management and Transboundary Movement) Rules, 2016.
- 2. In case the consent fee is revised upward during this period, the industry shall pay the differential fees to the Board (for the remaining years) to keep the consent order in force. If they fail to pay the amount within the period stipulated by the Board the consent order will be revoked without prior notice.
- The Board reserves the right to revoke / refuse consent to operate / to modify or stipulate additional conditions as deemed appropriate at any time during period for which consent is granted.
- 4. Rain water harvesting shall be followed by utilizing the rain water collected from the roof of the administrative buildings for recharging of ground water within the premises as per the concept and practices prescribed by CPCB.

The occupier must comply with the conditions stipulated in section A,B,C,D,E,F & G to keep this consent order valid.

To

The Director, M/s Ardent Steel Ltd., At/PO-Phuljhar, Via-Suakati, Dist-Keonjhar

> CHIEF ENV. SCIENTIST STATE POLLUTION CONTROL BOARD, ODISHA

Memo No.	/Dt	
Copy forward	ed to ;	
i.	Regional Officer, State Pollution Control Board, Keonjhar	
1000	District Collector, Keonjhar	
iii.	DDM, Mines, Joda, Keonjhar	
iv.	Central Laboratory, SPC Board, Bhubaneswar	

v. Cess Section (Head Office) vi. H.S.M. Cell, (Head Office)

> CHIEF ENV. SCIENTIST STATE POLLUTION CONTROL BOARD, ODISHA

GENERAL STANDARDS FOR DISCHARGE OF ENVIRONMENT POLLUTANTS

Annexure-I

GENERAL STANDARDS FOR DISCHARGE OF ENVIRONMENTAL POLLUTANTS PART – A: EFFLUENTS

SI. No.	Parameters	Standards					
		Inland surface	Public sewers	Land for irrigation	Marine Costal Areas		
Mr. B. Ballaton and Construction of the Constr		(a)	(b)	(c)	(d)		
1.	Colour & odour	Colourless/ Odourless as far as practible	paring	See 6 of Annex-1	See 6 of Annex-1		
2.	Suspended Solids (mg/l)	100	600	200	a. For process wastewater – 100 b. For cooling water effluent 10% above total suspended matter of influent.		
3.	Particular size of SS	Shall pass 850	An lar	44. pr	© 16		
5.	pH value	5.5 to 9.0	5.5 to 9.0	5.5 to 9.0	5.5 to 9.0		
6.	Temperature «	Shall not exceed 5°C above the receiving water temperature	48 ms.	24	Shall not exceed 5°C above the receiving water temperature		
7.	Oil & Grease mg/l max.	10	20	10	20		
8.	Total residual chlorine	1.0	49.04	70-100	1.0		
9.	Ammonical nitrogen (as N) mg/l max.	50	50	and specific and s	50		
10.	Total Kajeldahl nitrogen (as NH ₃) mg/l max.	100		ere e erece e	100		
11.	Free ammonia (as NH ₃) mg/l max.	5.0	ather and the last angles or conserve and an angle of the conserve and	No sig	5.0		
	Biochemical Oxygen Demand (5 days at (20 ⁰ C) mg/l max.	30	350	100	100		
13.	Chemical Oxygen Demand, mg/l max.	250		en:32	250		
	Arsenic (as As) mg/l max.	0.2	0.2	0.2	0.2		
	Mercury (as Hg) mg/l max.	0.01	0.01	70.60	0.001		
16.	ead (as pb) mg/l max.	01.	1.0	90 -tu	2.0		

SI. No.	Parameters		Star	ndards		
		Inland surface	Public sewers	Land for irrigation	Marine Costal Areas	
	and a final section of the section o	(a)	(b)	(c)	(d)	
17.	Cardmium (as Cd) mg/l max.	2.0	1,0	2-4	2.0	
18.	Hexavalent Chromium (as Cr + 6) mg/l max.	0.1	2.0	on 100	1.0	
19.	Total Chromium (as Cr) mg/l max.	2.0	2.0	90.00	2.0	
20.	Copper (as Cu) mg/l max.	3.0	3.0	14-91	3.0	
21.	Zinc (as Zn) mg/l max.	5.0	15	201.095	15	
22.	Selenium (as Sc) mg/l max.	0.05	0.05	160 199	0.05	
23.	Nickel (as Nil) mg/l max.	3.0	3.0	no 40	5.0	
24.	Cyanide (as CN) mg/l max.	0.2	2.0	0.2	0.02	
25.	Fluoride (as F) mg/l max.	2.0	15	50 HF	15	
26.	Dissolved Phosphates (as P) mg/l max.	5.0	92 W	00 pt		
27.	Sulphide (as S) mg/l max.	2.0	anh fid	e ve	5.0	
28.	Phennolic compounds as (C ₆ H ₅ OH) mg/l max.	1.0	5.0	international control of the control	5.0	
29.	Radioactive materials a. Alpha emitter micro	10 ⁷	10 ⁷	10 ⁸	10 ⁷	
	b. Beta emitter micro curle/ml.	10 ⁶	10 ⁶	10 ⁷	10 ⁶	
30.	Bio-assay test	90% survival of fish after 96 hours in 100% effluent	90% survival of fish after 96 hours in 100% effluent	90% survival of fish after 96 hours in 100% effluent	90% survival of fish after 96 hours in 100% effluent	
31	Manganese (as Mn)	2 mg/l	2 mg/l	40-101	2 mg/l	
32.	Iron (Fe)	3 mg/l	3 mg/l	per \$41	3 mg/l	
33.	Vanadium (as V)	0.2 mg/l	0.2 mg/l	ja - 100	0.2 mg/l	
34.	Nitrate Nitrogen	10 mg/l	an be	20.00	20 mg/l	

Annexure-II

NATIONAL AMBIENT AIR QUALITY STANDARDS

SI. No.	Pollutants	Time Weighed	Concentrate of Ambient Air				
		Average	Industrial Residential, Rural and other Area	Ecologically Sensitive Area (notified by Central Government)	Methods of Measurement		
(1)	(2)	(3)	(4)	(5)	(6)		
1.	Sulphur Dioxide (SO ₂), μg/m ³	Annual *	50	20	-Improved west and Gaeke		
***		24 Hours **	80	80	- Ultraviolet fluorescence		
2.	Nitrogen Dioxide (NO ₂), µg/m ³	Annual *	40	30	- Modified Jacob & Hochheise (Na-Arsenite)		
		24 Hours **	80	80	- Chemiluminescence		
3.	Particulate Matter (size less than 10μm) or	Annual *	60	60	-Gravimetric - TOEM		
	$PM_{10}\mu g/m^3$	24 Hours **	100	100	- Beta Attenuation		
4.	Particulate Matter (size less than 2.5µm) or	Annual *	40	40	-Gravimetric - TOEM		
	$PM_{2.5} \mu g/m^3$	24 Hours **	60	60	- Beta Attenuation		
5.	Ozone (O ₃) µg/m ³	8 Hours **	100	100	- UV Photometric - Chemiluminescence		
		1 Hours **	180	180	- Chemical Method		
6.	Lead (Pb) µg/m³	Annual * 24 Hours **	0.50 1.0	0.50 1.0	-AAS/ICP method after sampling on EMP 2000 or equivalent filter paper.		
7.	Carbon Monoxide (CO) mg/m ³	8 Hours **	02	02	- ED-XRF using Teflon filter - Non Dispersive Infra Rec (NDIR)		
	(/115/11	1 Hours **	04	04	Spectroscopy		
8.	Ammonia (NH3) μg/m³	Annual*	100	100	-Chemiluminescence - Indophenol Blue Method		
		24 Hours**	400	400	ı		
9,	Benzene (C ₆ H ₆) μg/m ³	Annul *	05	05	-Gas Chromatography based continuous analyzer - Adsorption and Desorption followed by GC analysis		
10.	Benzo (a) Pyrene (BaP)- Partículate phase only, ng/m³	Annual*	01	01	-Solvent extraction followed by HPLC/GC analysis		
11.	Arsenic (As), ng/m³	Annual*	06	06	-AAS/ICP method after sampling on EPM 2000 or equivalent filter paper		
12.	Nickel (Ni), ng/m³	Arinual*	20	20	-AAS/ICP method after sampling on EPM 2000 or equivalent filter paper		

^{*} Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

^{** 24} hourly or 08 hourly or 01 hourly monitored values, as applicable, shall be complied with 98% of the time in a year, 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

ANNEXURE TO FORM-IV

Existing/New/Altered

the: Any applicant knowingly giving incorrect information or suppressing any information pertaining there to shall be liable to be furnished under the Act, while filling the Annexure, the applicant not concerned with any of the items shall be liable to be furnished under the Act, while filling this Annexure, the Applicant not concerned with any of the items shall state 'Not concerned' against the relevent one.

address(in block letters)

: Dr Subhasish Das

Address: Plot No.208, Mining Road New colony

Telephone: 06766-25847;

2 Full name of the land/premises/Area/ Institute/Factory/Industry/ Treatment plant with address.

: VILL/PO PHULJHARA LA SUAKATI

City:SUAKATI Tehsil:Bansapal N District:Keonjhar

Industry Telephone:06766-258473

Revenue/Survey number of land 3. premises for which the application is made stating District Subdivision and Village.

: District:Keonjhar Town: SUAKATI Tehsil:Bansapal N

City Survey no./Revenue Survey no.:150/66

State the month and the year in which : january,2010 4. the land premises/Area/Institute/Factory/Indus try/Treatment plant was actually put into commission or is proposed to be put into Commission.

State the 5. Civil/Minister/Defence/Industrial etc. under whose administrative jurisdiction the applicant's land/Premises is situated.

: Civil

District: Keonihar Corporation: NA Municipality: NA

Village Panchayat/Cantonment/Defence department:

Phuljhar

Post Trust: NA

State Government: Odisha Prohibited Area: NA

: NO

(a). State whether the land/premises/factory/industry has been declared as prohibited area

(b) If yes, state the name of the authority and furnish a certified copy of the order under which the area has been declared as the prohibited area.

> --- This is computer generated application ---http://odocums.nic.in' - (OSPCB)

Is the industry/factory for which application is made closed on any days of the week, if so give the days on which it is closed.

State working season in a year for the : (from: Apr to: Mar)

(a) No. of workers attending the

: 350

(b) No. workers residing in the

: 500

10. (For local Bodies only)

9.

(a) Present Population

(b) Population covered under regular sewarage facilities.

(c) Population covered by conservancy latrins.

(d) Population having septic tank/pit

privy facilities.

(a) List the raw materials used such as metals, alloys, oils fuel etc. used per month in Metric

Material & Alloys	Material Details	Weight
HSD	9.36kl/day	
Coal	7.15T/day	Management (1997)
Petcoke	88.80T/day	

(b) List of the products and by-products manufactured and the production per month.

Name of Products	Quantity	Unit
IRON ORE PELLET	600000.0	Metric Tonnes/Year
FLUX GRINDING UNIT	5.0	Metric Tonnes/Hour
PRODUCER GAS IN NM3/HR	25800.0	Cubic Meters/Hour

(c) Brief description of production

: (As Attached)

process

Water source and comsumption details:

Source Type	Source Name	Quantity(KL/D)
Ground Water (within premises)	Bore Well	500.0

---- This is computer generated application ---http://odocmms.nic.in/ - (OSPCB)